Stability of Curved Interfaces in the Perturbed Two-Dimensional Allen--Cahn System

نویسندگان

  • David Iron
  • Theodore Kolokolnikov
  • John Rumsey
  • Juncheng Wei
چکیده

We consider the singular limit of a perturbed Allen–Cahn model on a bounded twodimensional domain: { ut = ε2Δu− 2(u− εa)(u2 − 1), x ∈ Ω ⊂ R2 ∂nu = 0, x ∈ ∂Ω where ε is a small parameter and a is an O(1) quantity. We study equilibrium solutions that have the form of a curved interface. Using singular perturbation techniques, we fully characterize the stability of such an equilibrium in terms of a certain geometric eigenvalue problem, and give a simple geometric interpretation of our stability results. Full numerical computations of the time-dependent PDE as well as of the associated two-dimensional eigenvalue problem are shown to be in excellent agreement with the analytical predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of strict Lyapunov function for nonlinear parameterised perturbed systems

In this paper, global uniform exponential stability of perturbed dynamical systems is studied by using Lyapunov techniques. The system presents a perturbation term which is bounded by an integrable function with the assumption that the nominal system is globally uniformly exponentially stable. Some examples in dimensional two are given to illustrate the applicability of the main results.

متن کامل

Application of the Local DiscontinuousGalerkinMethod for the Allen-Cahn/Cahn-Hilliard System

In this paper, we consider the application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system. The method in this paper extends the local discontinuous Galerkin method in [10] to the more general application system which is coupled with the Allen-Cahn and Cahn-Hilliard equations. Similar energy stability result as that in [10] is presented. Numerical results for ...

متن کامل

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

متن کامل

The Allen-cahn Action Functional in Higher Dimensions

Abstract. The Allen–Cahn action functional is related to the probability of rare events in the stochastically perturbed Allen–Cahn equation. Formal calculations suggest a reduced action functional in the sharp interface limit. We prove in two and three space dimensions the corresponding lower bound. One difficulty is that diffuse interfaces may collapse in the limit. We therefore consider the l...

متن کامل

Passivity-Based Stability Analysis and Robust Practical Stabilization of Nonlinear Affine Systems with Non-vanishing Perturbations

This paper presents some analyses about the robust practical stability of a class of nonlinear affine systems in the presence of non-vanishing perturbations based on the passivity concept. The given analyses confirm the robust passivity property of the perturbed nonlinear systems in a certain region. Moreover, robust control laws are designed to guarantee the practical stability of the perturbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2009